Motion Detection
Keyvan Yaghmayi

The goal of this project is to write a software that detects moving objects. The idea,
which is used in security cameras, is basically the process of comparing sequential images
and determining whether the differences between them represent motion.

Ezxample 1: The top two images are our inputs. The software detects the person. The
black-and-white image is the raw output of the program that is denoised and visualized.




We do this project in three steps:

1. Extracting Foreground: We write a program that extracts foreground of an image.

2. Denoising: The program would probably extract and visualize some small pieces that
we are not interested in, therefore, we should denoise our result from previous step.

3. Motion Detection: We write a program that compares two consecutive images and
highlights their differences.

1 Extracting Foreground:

Consider an image that contains some dark objects on bright background (or vice versa).
We separate the image into foreground and background and visualize the connected pieces
of foreground. Our program has two functions:

e Dual Threshold Function which takes a gray-scale image and two threshold values. It
returns a binary image, i.e. a black and white image, which lies in between of those
thresholds.

e We also have Flood Fill Function base on the well-known Flood Fill Algorithm which
assigns a label to a connected component. It takes three parameters: a binary image, a
seed point which is white, and a label. The algorithm looks for all pixels connected to
the seed point by a path of white pixels and labels them. Importing LinkedList class
from Java into Matlab, made our function short and efficient.

A few examples:

Ezample 2: (left) The image of brain in black background. (middle) The lighter fore-
ground is extracted. Using threshold values 0 and 85, there are 19 connected components in
total. (right) The interesting components are the skull, visualized in orange, and the brain
tissue visualized in green. There is also a small connected component, visualized in blue, on
the right side between the skull and the brain tissue.




Example 3:

In this image the grayness level of the back-
ground is changing from 104 at the top right
to 14 at the bottom left. This will challenge
us in choosing proper thresholds. We used 75
and the results are images (A) and (B).

Note that with a simple modification in our
code, for instance by using the command
graythresh(), we can let the software choose
the threshold levels automatically. In this ex-
ample graythresh() returns 82 and the results
are images (C) and (D).




Ezxample 4: This time our image has some noise.

Applying our software with threshold values of 110
and 230 does a decent job of extracting all three
geometric shapes. Because of the noise, there are
some dots in our binary image and its visualization.




2 Topological Denoising

Ezample 5: Consider a black and white image (or black and gray and white image) with
some noises. For instance, in the following image the stars are noise and we like to remove
them.

i

We want to visualize connected components and get rid of noises such that each noise get
the same color of the adjacent component that has the largest boundary with the noise. In
image above, the white star is completely located inside a black component and we get rid
of it by coloring it with the same green color of its adjacent component. The black star has
two neighbors: the white rectangle and the gray circle. We remove this noise by assign it the
same color of the circle because it has larger boundary with the circle.

The denoising program is based on the extracting foreground program and the flood fill
routine. We modified flood fill algorithm to keep track of the size (number of pixels) of con-
nected components. If this size is smaller than a certain number, then the component will
be considered as a noise.

First, the program visualizes all connected components including the noises. Then, for
noise components, it looks at the boundary pixels and their colors. After finding the dominant
color, it calls the flood fill function to fill up the noise component with this color.



Example 6: Denoising our images from Ezample 4. Left side image has 29 connected
components which all are noise except 4 of them: the rectangle, the circle, the triangle, and
the background.

Example 7: On the left we have image (C) from Ezample 3. We applied denoisation
by re-coloring each component with 300 pixels or less with the same color of its dominant
neighbor.




Ezxample 8: Another example that stars are noise.




3 Motion Detection

We write a software that automatically detects moving objects. The idea, which is used in
security cameras, is basically the process of comparing sequential images and determining
whether the differences between them represent motion. If there are significant differences
between two consecutive images, the cameras conclude that there has been motion within
the camera view.

In the following we have two pictures, the program analyzes them and highlights the differ-
ence in white color. Then we implement denoisation from previous section to refine the result.

Ezample 9: The moving parts are the dog and tall grasses on the right side.




Ezample 10 (A) Photo from a parking lot. (B) Another photo after one second. (C) De-
tecting the motion in black-and-white with high sensitivity. (D) Denoisation and colorization
of (C). (E) Detecting motion with low sensitivity. Comparing to (C), there are less noise and
the cars and the person have better visualization. (F) Denoisation and colorization of (E);
In (D) we have better result.




